
 1

DataFinder – A Scientific Data Management Solution
Tobias Schlauch (1), Andreas Schreiber (2)

(1) German Aerospace Center (DLR)
Simulation and Software Technology

Lilienthalplatz 7, D-38108 Braunschweig, Germany
EMail: Tobias.Schlauch dlr.de

(2) German Aerospace Center (DLR)
Simulation and Software Technology

Linder Höhe, D-51147 Cologne, Germany
EMail: Andreas.Schreiber dlr.de

ABSTRACT
The data management system DataFinder primarily targets the management of scientific technical data.
Data can be attached with individual meta data that is based on a free-definable hierarchical data model
to achieve data structuring and ordering. Moreover, the system is able to handle large amounts of data
and can be easily integrated in existing working environments.

The purpose of this paper is to present the key concepts of the DataFinder as well as current and future
usage scenarios. In addition, the paper shows the extension of the existing architecture to integrate the
Grid transport protocol GridFTP and the archiving system Tivoli Storage Manager (TSM) which leads
in a general Grid-enabled data management application that is capable of handling distributed storage
resources and archives.

Keywords: DataFinder, Data Management, Grid Computing, GridFTP, Tivoli Storage Manager, TRACE

INTRODUCTION
The development of the data management system DataFinder is motivated by different DLR-institutes
that have early recognized the need of reorganizing their data management process. On the one hand the
storage, backup and archiving of data is an important expense factor for these institutes but on the other
hand the data represents the institute’s knowledge. Therefore an evaluation process of commercial
product data management systems was initiated. The outcome of the evaluation showed that the
considered commercial systems would require high investments whereas delivering a lot of functionality
which is not required by scientific research institutes. At the same time the DLR-Institution Simulation
and Software Technology [1] developed a prototype of the DataFinder based on a flexible scientific data
management concept, which has been designed for the simulation environment TENT [2]. The
DataFinder prototype was easily able to solve the evaluation scenario so it was decided to enhance the
prototype with the requirements of the involved institutes. The details of the evaluation process are
described in [3].

The DataFinder is currently used and introduced at DLR for a couple of different applications and user
communities. New requirements arise from these applications in particular the usage of archive storage
systems. Moreover, the amount of data produced by current and future scientific applications is
increasing exponentially. Hence the DataFinder is enhanced with interfaces for usage of Grid storage
resources in the D-Grid Initiative [4].

The following sections give a general overview about basic concepts and functionality of the DataFinder
system. Furthermore, a usage scenario is presented. Afterwards the integration of the archive storage
system Tivoli Storage Manager (TSM) and the Grid data transfer protocol GridFTP are described.

ARCHITECTURE
The DataFinder system is based upon a client-server-architecture. Important design goals were the usage
of open and stable standards and the limitation of the own development effort to a necessary minimum.
Therefore a basic concept is the usage of the standardized Web-based Distributed Authoring and
Versioning (WebDAV) protocol. WebDAV is based upon the Hypertext Transfer Protocol (HTTP) and
defines server-side versioning, searching, and access control among other HTTP extensions. Moreover,
on server side only existing third-party systems are used. Figure 1 shows the overall architecture.

Figure 1: Client-server-architecture of the DataFinder system

The meta data server is accessed via the WebDAV protocol by the client and has to support the
WebDAV extensions for server-side searching, versioning, and access control. For that reason the
DataFinder system currently supports the commercial WebDAV server Tamino - developed by the
Software AG [5] - and the open source WebDAV server Catacomb [6]. The meta data server basically
provides access to the system and is used for the storage of central configuration information as well as
the meta information and logical structure of the managed data files.

The managed data files can be stored together with the according meta data on the WebDAV server but
for performance reasons the usage of heterogeneous, distributed storage resources is supported as well.
In this case the meta data server only holds references to the data files. Storage resources are accessed
via standardized data transfer protocols whereat the system currently supports FTP, CIFS, NFS and
WebDAV.

FUNCTIONALITY
The DataFinder system is described best as a data management framework that offers basic data
management functionality but is in particular flexible and easy extensible.

Basically the data files are managed in a hierarchical structure according to a free-definable data model.
The structure consists of collections and resources similar to a file system. A collection contains
collections as well as resources and corresponds to a directory. A resource contains no sub-items and
corresponds to file. Additionally every data item is assigned a set of standard and data model specific
properties. This logical data structure is stored on the meta data server.

The DataFinder provides the following standard functionalities:
• Import of data files into different storage locations.

• Creation of collections.

• Downloading, copying, moving, removing and renaming of collections and resources.

• Annotating of meta information to collections and resources.

 2

• Specification of complex search queries based upon meta data.

• Access control based on access control lists (ACLs).

• Extensible graphical user interfaces.

SECURITY
Authentication and access control are dependent on the authentication repository of the meta data server.
The DataFinder does not require an additional user management, which would increase the effort for
maintenance. The authentication is directly performed against the meta data server. In this context
standard HTTP respectively HTTP Secure (HTTPS) mechanisms are used.

The access to data items and configuration resources is controlled by ACLs. An ACL is attached to a
specific data item and contains the privileges of specific users and groups. The DataFinder allows the
querying of the authentication repository by using the WebDAV protocol or the Lightweight Directory
Access Protocol. In current scenarios the DataFinder is used in conjunction with Microsoft Active
Directory. Currently the privileges read data object, write data object, read data object ACL and write
data object ACL are supported. An ACL defined on a collection is inherited by default. The ACLs are
only stored and controlled on meta data level.

Secure communication with the meta data server is provided by using HTTPS. The communication
security with the specific storage resource is dependent on the used data transfer protocol.

USER INTERFACES
The client side consists of a user client giving access to the basic data management functionalities and
an administrative client allowing the setup of the whole environment. The clients are implemented with
Python [7] and the graphical user interface toolkit Qt [8] to support a wide range of platforms.
Moreover, the DataFinder provides a Python Application Programming Interface (API) to allow simple
integration with existing applications. Figure 2 shows the DataFinder user client.

Figure 2: DataFinder user client

 3

DATA STORES
In the DataFinder context, a specific storage resource accessed via a data transfer protocol is referred to
as data store. A concrete data store is configured with the administration client whereat the configuration
is stored on the meta data server. The configuration is centrally available and contains all required
information for accessing the specific storage location including authentication credentials. The access
to the configuration resources can be controlled using ACLs.

A data file imported with the DataFinder is assigned a meta information indicating the data store it is
stored on. Therefore the storage location is fully transparent to the user. Moreover, this approach allows
an easy migration of an existing data store to another storage location.

DATA MODELING
The data model consists of data types and parent-child relations between them. Every data type consists
of a set of mandatory and required properties. The relations between the data types are always one-to-
many whereat the definition of recursive relations is allowed. Both resources and collections own a data
type. The difference is that resources correspond to a leaf node and collections to an inner node in the
hierarchical structure. The modeling task is supported by the administration client.

EXTENSION VIA PYTHON SCRIPTS
The functionality of the DataFinder user client can be easily extended using the available Python API
and Qt. In this context local and server scripts are distinguished. Local scripts are imported from the
local file system and are only available on the specific client machine. Server scripts are stored on the
meta data server and are available to all users. Every script owns a set of properties that, for instance,
provide a description of the extension. Moreover, the script execution can be bound to specific data
types. Examples of this script extension mechanism are presented in the following section.

USAGE SCENARIO
In the DLR scope the project-oriented management of relevant data of numeric simulation systems is a
typical usage scenario of the DataFinder. In this section the Turbo machinery Research Aerodynamic
Computational Environment (TRACE) developed by the DLR-Institute of Propulsion Technology [9] is
used as an example. The purpose of this simulation system is the computation and investigation of
complex turbo machinery flows. This example in particular demonstrates the necessary customization
steps to optimally use the DataFinder in a specific environment.

The first step covers the development of an appropriate data model. This step is important because the
data model indicates the relations between the managed data that are often only known to a few
employees. In particular the data model makes theses relations visible to all users. Figure 3 shows the
simplified TRACE data model without attributes.

Figure 3: Simplified TRACE data model without attributes

 4

 5

The data model can be seen as a template of the hierarchical structure that can be created with the user
client. On top level it is only possible to create collections with data type Project and User. Moreover, a
recursion was modeled allowing the mapping of specific projects to a user. These types of collections
are used to organize different simulation runs. A project itself consists of documentation resources and
collections of data type Run. The Run data type entirely describes a TRACE simulation including input
and output files, pre- and postprocessing data and specific monitoring information (e.g. simulation
duration). Due to the standardized structure and meta data a user can easily identify relevant simulations.

The creation of the structure and import of files are standard functionalities of the DataFinder user
client. The manually carrying out of these actions can become quite time-consuming. Therefore the
development of script extensions automating common tasks marks the next customization step. The
following additional functionalities exist in this usage scenario:
• Automated creation of Run collections whereat the user only needs to specify the required input

files. The script extension imports these input files, creates the required sub-collections and adds
required meta data to the created data items.

• Asynchronous workflow management. By using these script extensions the user is able to start a
specific simulation on the local or on a remote machine, check the status of the simulation and
cancel a running simulation. In this context input data respectively output data is automatically
transferred between the DataFinder and the target machine performing the calculation.

• Project-specific simulation overview.

• Integration of common tools for input and output data visualization.

To sum up the described usage scenario demonstrates the close integration of a common workflow with
the data management task that can be achieved with the DataFinder system. In this case even non-
TRACE experts are easily able to run and evaluate TRACE simulations whereat the results are centrally
available. Moreover, the standardized structure in conjunction with the search functionality allows fast
and easy access to specific simulations.

INTEGRATION OF TIVOLI STORAGE MANAGER
Due to legal regulations it is necessary to preserve scientific results a prescribed retention period. In
general the results do not require fast access wherefore they can be stored on existing archive systems.
Moreover, the outsourcing of data to offline storage leads to a reduction of costs. The DLR IT service
provider offers the usage of the archive system Tivoli Storage Manager [10] for backup and archiving
tasks. In this context arose the requirement to directly archive DataFinder resources using the TSM from
the DLR-Institute of Aerodynamics and Flow Technology [11].

In this first integration approach the DataFinder supports the archiving of:
• single resources managed by the DataFinder and

• single data files directly from the local file system.

In both cases the meta data and the archived data files are still accessible via the standard DataFinder
functionalities. Moreover, additional meta data is stored for archived resources to be able to identify
them in the archive system and to indicate the expiration of their retention period. At the moment data
files are stored in the TSM archive without specific meta information.

The encapsulation of the TSM archive access is achieved by using the data store concept. Furthermore,
the Python API and the user client have been adapted to support the two archiving use cases. On data
store level it is possible to specify different archive options including indication of read-only archives
and retention period of archived data. Due to the fact that the configuration is centrally provided by an
administrator the archiving task becomes as simple as the import of data files.

In the current scenario the TSM archive used is only accessible by a specific TSM gateway machine.
The gateway contains the TSM client required for TSM archive access. Hence it is necessary to transfer
the data files to the local file system of the gateway machine and to initiate the different TSM actions on

this machine. So it was decided to use the standard protocols SFTP and SSH supported by the gateway
machine for transferring the data to the gateway respectively controlling the archiving process via the
TSM command line interface. This approach allows all users the usage of the archiving functionalities
from their specific client machine. Figure 4 shows the different interactions between the components
when archiving a single resource managed by the DataFinder system.

Figure 4: Archiving of a DataFinder data item

At first the storage location of the specific resource is retrieved from the meta data server and the data
file is downloaded into the local file system of the user’s client machine. In the next step a new meta
data item with specific information is created on the meta data server. Finally, the data file is transferred
to the TSM gateway and stored in the TSM archive.

The described integration is currently improved in different areas. For instance the support for archiving
complete collections including all sub-collections and resources is going to be added. Moreover, it is
planned to archive the meta information of the managed resources together with the data files according
to the ISO reference model of an Open Archival Information System (OAIS) [12]. Additionally further
approaches reducing the number of required data transfers are currently evaluated.

INTEGRATION OF GRIDFTP
For preparation of the DataFinder system to handle large amounts of data produced by future scientific
application the system is enhanced with the ability to access Grid storage resources within the D-Grid
Initiative respectively the D-Grid Integration project (DGI). Grid storage resources are accessed via a
Grid middleware that provides among others efficient protocols for data transfer and virtualizes the
concrete storage resource. One result of the project is the integration of the GridFTP protocol [13] in the
DataFinder system.

The GridFTP protocol is developed and maintained by the Globus Alliance and is a part of the Grid
middleware Globus Toolkit [14]. In general the GridFTP protocol can be considered as an extension of
the FTP protocol with the requirements of data transfers in Grid infrastructures. GridFTP for instance
supports parallel, striped, partial or third-party data transfers. Moreover, it provides transfer monitoring
and automatic restarts at specific transfer points. Additionally GridFTP supports the Globus security
infrastructure that allows the usage of different data transfer security levels including encryption and
integrity checks of transferred data.

The basis of the integration forms the GridFTP client reference implementation of the Globus Toolkit.
Through the library pyGlobus [15] this reference implementation is available in Python. In general
pyGlobus is an API allowing the usage of services provided by the Globus Toolkit. The encapsulation of
the GridFTP client implementation is achieved by provision of a specific data store. The configuration
of the GridFTP data store is centrally provided by the administration client. The administration client
allows the specification of the whole range of options concerning authentication, performance and
security. Thus the complexity of the data transfer protocol is completely hidden from the user.

This integration allows the usage of efficient secure data transfers and accessing storage resources
provided by the Globus Grid middleware. The current integration is going to be extended to allow
partial data transfers. Therefore the DataFinder Python API has to be adapted to provide the required
user interface.

 6

 7

CONCLUSION
The approach of the presented system allows an efficient and flexible management of scientific data.
This is achieved by provision of structure and meta information to the managed data according to a free-
definable data model. Moreover, the described data store concept allows the flexible integration of
heterogeneous storage resources and easy migration to another storage location. The details of the
specific data transfer protocol are hidden, so the storage location is entirely transparent to the user.

The described usage scenario at DLR demonstrates the flexible extensibility of the DataFinder user
client for a specific scenario via the provided script extension mechanism. In particular in conjunction
with the implemented script extensions a close integration of the typical TRACE workflow with the data
management task is achieved. The TRACE usage scenario is going to be enhanced with interfaces to the
Grid middleware UNICORE 6 in the D-Grid community project AeroGrid [16]. In particular, the
workflow management functionality is extended with the ability to use computation and storage
resources provided by this Grid middleware. Moreover, the DataFinder is going to be extended to
document and trace the detailed history of a computational process that leads to a certain result
(“Provenance” [17]). The integration of a Provenance service which records detailed information of all
conducted execution steps, increases the dependability of the results and improves the user’s confidence
in their quality.

In the last part of this paper the integration of the archive system Tivoli Storage Manager and the
GridFTP protocol were presented. In general this has been accomplished by using the existing data store
concept. Currently the TSM integration enables the DataFinder to archive single data files. This
approach is refined to support archiving of complete collections. Furthermore, it is aimed to achieve an
archiving process compliant to the OAIS reference model.

REFERENCES
[1] – Simulation and Software Technology: http://www.dlr.de/sc/ (2007)

[2] – A. Schreiber: The Integrated Simulation Environment TENT. Concurrency and Computation: Practice and
Experience 2002; 14; 1553-1568 (2002)

[3] – E. Hoffmann, M. Wagner: Design of a Management Tool for Scientific Data at the DLR-Institute of
Aerodynamics and Flow Technology: DataFinder. NAFEMS2003, Wiesbaden (2003)

[4] – D-Grid Initiative: http://www.d-grid.de/ (2007)

[5] – Software AG: http://www.softwareag.com/de/products/tamino/ (2007)

[6] – Catacomb: http://catacomb.tigris.org/ (2007)

[7] – Python Programming Language: http://python.org/ (2007)

[8] – Trollltech: Qt: Cross-Platform Rich Client Development Framework. http://trolltech.com/products/qt/ (2007)

[9] – Institute of Propulsion Technology: http://www.dlr.de/at/ (2007)

[10] – IBM Tivoli Storage Manager: http://www-306.ibm.com/software/tivoli/products/storage-mgr/ (2007)

[11] – Institute of Aerodynamics and Flow Technology: http://www.dlr.de/as/ (2007)

[12] – Consultative Committee for Space Data Systems: Reference Model for an Open Archival Information
 System (OAIS). CCSDS 650.0-B-1, http://public.ccsds.org/publications/RefModel.aspx (2002)

[13] – GridFTP protocol: http://www.globus.org/toolkit/data/gridftp/ (2007)

[14] – Globus Toolkit: http://www.globus.org/toolkit/ (2007)

[15] – Python Globus: http://dsd.lbl.gov/gtg/projects/pyGlobus/ (2007)

[16] – AeroGrid: http://www.aero-grid.de/ (2007)

[17] – L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S. Jiang, S. Munroe, O. Rana, A. Schreiber, V. Tan,
 and L. Varga. The Provenance of Electronic Data. Communications of the ACM, 2007 (to appear)

	INTRODUCTION
	ARCHITECTURE
	FUNCTIONALITY
	SECURITY
	USER INTERFACES
	DATA STORES
	DATA MODELING
	EXTENSION VIA PYTHON SCRIPTS
	USAGE SCENARIO
	INTEGRATION OF TIVOLI STORAGE MANAGER
	INTEGRATION OF GRIDFTP
	CONCLUSION

